Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Viruses ; 14(9)2022 09 18.
Article in English | MEDLINE | ID: covidwho-2043979

ABSTRACT

The Delta variant of SARS-CoV-2 has caused many breakthrough infections in fully vaccinated individuals. While vaccine status did not generally impact the number of viral RNA genome copies in nasopharyngeal swabs of breakthrough patients, as measured by Ct values, it has been previously found to decrease the infectious viral load in symptomatic patients. We quantified the viral RNA, infectious virus, and anti-spike IgA in nasopharyngeal swabs collected from individuals asymptomatically infected with the Delta variant of SARS-CoV-2. Vaccination decreased the infectious viral load, but not the amount of viral RNA. Furthermore, vaccinees with asymptomatic infections had significantly higher levels of anti-spike IgA in their nasal secretions compared to unvaccinated individuals with asymptomatic infections. Thus, vaccination may decrease the transmission risk of Delta, and perhaps other variants, despite not affecting the amount of viral RNA measured in nasopharyngeal swabs.


Subject(s)
COVID-19 , Vaccines , Asymptomatic Infections , COVID-19/prevention & control , Humans , Immunoglobulin A , RNA, Viral/genetics , SARS-CoV-2/genetics , Vaccination , Viral Load
2.
J Pediatric Infect Dis Soc ; 2022 Aug 31.
Article in English | MEDLINE | ID: covidwho-2017999

ABSTRACT

Children are capable of initiating COVID-19 transmission into households, but many questions remain about the impact of vaccination on transmission. Data from a COVID-19 Delta variant outbreak at an overnight camp in Texas during June 23-27, 2021 were analyzed. The camp had 451 attendees, including 364 youths aged <18 years and 87 adults. Detailed interviews were conducted with 92 (20.4%) of consenting attendees and 117 household members of interviewed attendees with COVID-19. Among 450 attendees with known case status, the attack rate was 41%, including 42% among youths; attack rates were lower among vaccinated (13%) than among unvaccinated youths (48%). The secondary attack rate was 51% among 115 household contacts of 55 interviewed index patients. Secondary infections occurred in 67% of unvaccinated household members and 33% of fully or partially vaccinated household members. Analyses suggested that household member vaccination and camp attendee masking at home protected against household transmission.

4.
PLoS One ; 17(5): e0268434, 2022.
Article in English | MEDLINE | ID: covidwho-1862269

ABSTRACT

The SARS-CoV-2 pandemic have been affecting millions of people worldwide, since the beginning of 2020. COVID-19 can cause a wide range of clinical symptoms, which varies from asymptomatic presentation to severe respiratory insufficiency, exacerbation of immune response, disseminated microthrombosis and multiple organ failure, which may lead to dead. Due to the rapid spread of SARS-CoV-2, the development of vaccines to minimize COVID-19 severity in the world population is imperious. One of the employed techniques to produce vaccines against emerging viruses is the synthesis of recombinant proteins, which can be used as immunizing agents. Based on the exposed, the aim of the present study was to verify the systemic and immunological effects of IM administration of recombinant Nucleocapsid protein (NP), derived from SARS-CoV-2 and produced by this research group, in 2 different strains of rats (Rattus norvegicus); Wistar and Lewis. For this purpose, experimental animals received 4 injections of NP, once a week, and were submitted to biochemical and histological analysis. Our results showed that NP inoculations were safe for the animals, which presented no clinical symptoms of worrying side effects, nor laboratorial alterations in the main biochemical and histological parameters, suggesting the absence of toxicity induced by NP. Moreover, NP injections successfully triggered the production of specific anti-SARS-CoV-2 IgG antibodies by both Wistar and Lewis rats, showing the sensitization to have been well sufficient for the immunization of these strains of rats. Additionally, we observed the local lung activation of the Bronchus-Associated Lymphoid Tissue (BALT) of rats in the NP groups, suggesting that NP elicits specific lung immune response. Although pre-clinical and clinical studies are still required, our data support the recombinant NP produced by this research group as a potential immunizing agent for massive vaccination, and may represent advantages upon other recombinant proteins, since it seems to induce specific pulmonary protection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity , Immunization , Lung , Nucleocapsid Proteins , Rats , Rats, Inbred Lew , Rats, Wistar , Recombinant Proteins , Spike Glycoprotein, Coronavirus , Vaccination
5.
J Mol Diagn ; 24(5): 455-461, 2022 05.
Article in English | MEDLINE | ID: covidwho-1773516

ABSTRACT

Tracking new and emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has become increasingly important for public health responses, primarily because of variant-dependent transmission, disease severity, and treatment decisions. This evaluation compared Seegene Technologies Novaplex SARS-CoV-2 Variants I, II, and IV (I,II&IV) assays to detect known SARS-CoV-2 variants using traditional spike gene Sanger sequencing results as the gold standard reference. Both RNA extraction and extraction-free protocols were assessed. A total of 156 samples were included in this study. There was 100% (109/109) overall agreement (95% CI, 96.7%-100%) between the spike gene sequencing and the I,II&IV results using extracted RNA for the variants included in the Novaplex assay menus. The RNA extraction-free method was 91.7% (143/156) as sensitive (95% CI, 86.2%-95.5%) as the traditional RNA extraction method. Using the extraction-free method on samples with higher cycle threshold values (>30) resulted in some mutations not being detected, presumably due to lower nucleic acid concentrations in the original samples. In conclusion, the I,II&IV assays provide an accurate, rapid, and less labor-intensive method for detecting SARS-CoV-2 and identifying known variants of interest and concern. The RNA extraction-free method for samples with cycle threshold of <30 could be cost-effective for surveillance purposes. However, spike gene sequencing retains the advantage of detecting more and new variants.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Mutation , RNA , SARS-CoV-2/genetics
6.
Lancet Reg Health Am ; 10: 100216, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1740018

ABSTRACT

Background: Administration of convalescent plasma may serve as an adjunct to supportive treatment to prevent COVID-19 progression and death. We aimed to evaluate the efficacy and safety of 2 volumes of intravenous convalescent plasma (CP) with high antibody titers for the treatment of severe cases of COVID-19. Methods: We conducted a Bayesian, randomized, open-label, multicenter, controlled clinical trial in 7 Brazilian hospitals. Adults admitted to hospital with positive RT-PCR for SARS-CoV2, within 10 days of the symptom onset, were eligible. Patients were randomly assigned (1:1:1) to receive standard of care (SoC) alone, or in combination with 200 mL (150-300 mL) of CP (Low-volume), or 400 mL (300-600 mL) of CP (High-volume); infusion had to be performed within 24 h of randomization. Randomization was centralized, stratified by center. The primary outcome was the time until clinical improvement up to day 28, measured by the WHO ten-point scale, assessed in the intention-to-treat population. Interim and terminal analyses were performed in a Bayesian framework. Trial registered at ClinicalTrials.gov: NCT04415086. Findings: Between June 2, 2020, and November 18, 2020, 129 patients were enrolled and randomly assigned to SoC (n = 42), Low-volume (n = 43) or High-volume (n = 44) CP. Donors presented a median titer of neutralizing antibodies of 1:320 (interquartile range, 1:160 to 1:1088). No evidence of any benefit of convalescent plasma was observed, with Bayesian estimate of 28-day clinical improvement of 72.7% (95%CI, 58.8 to 84.7) in the SoC versus 64.1% (95%ci, 53.8 to 73.7) in the pooled experimental groups (mean difference of -8.7%, 95%CI, -24.6 to 8.2). There was one case of cutaneous mild allergic reaction related to plasma transfusion and one case of suspected transfusion-related acute lung injury but deemed not to be related to convalescent plasma infusion. Interpretation: In this prospective, randomized trial of adult hospitalized patients with severe COVID-19, convalescent plasma was not associated with clinical benefits. Funding: Brazilian Ministry of Science, Technology and Innovation, Fundação de Amparo à Pesquisa do Estado de São Paulo.

7.
Nat Commun ; 13(1): 852, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1684027

ABSTRACT

The spread of the Omicron SARS-CoV-2 variant underscores the importance of analyzing the cross-protection from previous non-Omicron infection. We have developed a high-throughput neutralization assay for Omicron SARS-CoV-2 by engineering the Omicron spike gene into an mNeonGreen USA-WA1/2020 SARS-CoV-2 (isolated in January 2020). Using this assay, we determine the neutralization titers (defined as the maximal serum dilution that inhibited 50% of infectious virus) of patient sera collected at 1- or 6-months after infection with non-Omicron SARS-CoV-2. From 1- to 6-month post-infection, the neutralization titers against USA-WA1/2020 decrease from 601 to 142 (a 4.2-fold reduction), while the neutralization titers against Omicron-spike SARS-CoV-2 remain low at 38 and 32, respectively. Thus, at 1- and 6-months after non-Omicron SARS-CoV-2 infection, the neutralization titers against Omicron are 15.8- and 4.4-fold lower than those against USA-WA1/2020, respectively. The low cross-neutralization against Omicron from previous non-Omicron infection supports vaccination of formerly infected individuals to mitigate the health impact of the ongoing Omicron surge.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , COVID-19/blood , COVID-19/virology , Cross Reactions , Humans , Neutralization Tests , Reinfection/blood , Reinfection/immunology , Reinfection/virology , SARS-CoV-2/genetics
8.
ACS Pharmacol Transl Sci ; 4(5): 1514-1527, 2021 Oct 08.
Article in English | MEDLINE | ID: covidwho-1437654

ABSTRACT

An unprecedented global health crisis has been caused by a new virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We performed experiments to test if a hypertonic saline solution was capable of inhibiting virus replication. Our data show that 1.2% NaCl inhibited virus replication by 90%, achieving 100% of inhibition at 1.5% in the nonhuman primate kidney cell line Vero, and 1.1% of NaCl was sufficient to inhibit the virus replication by 88% in human epithelial lung cell line Calu-3. Furthermore, our results indicate that the inhibition is due to an intracellular mechanism and not to the dissociation of the spike SARS-CoV-2 protein and its human receptor. NaCl depolarizes the plasma membrane causing a low energy state (high ADP/ATP concentration ratio) without impairing mitochondrial function, supposedly associated with the inhibition of the SARS-CoV-2 life cycle. Membrane depolarization and intracellular energy deprivation are possible mechanisms by which the hypertonic saline solution efficiently prevents virus replication in vitro assays.

9.
Eur Respir J ; 59(2)2022 02.
Article in English | MEDLINE | ID: covidwho-1304392

ABSTRACT

BACKGROUND: The effects of convalescent plasma (CP) therapy in hospitalised patients with coronavirus disease 2019 (COVID-19) remain uncertain. This study investigates the effect of CP on clinical improvement in these patients. METHODS: This is an investigator-initiated, randomised, parallel arm, open-label, superiority clinical trial. Patients were randomly (1:1) assigned to two infusions of CP plus standard of care (SOC) or SOC alone. The primary outcome was the proportion of patients with clinical improvement 28 days after enrolment. RESULTS: A total of 160 (80 in each arm) patients (66.3% critically ill, 33.7% severely ill) completed the trial. The median (interquartile range (IQR)) age was 60.5 (48-68) years; 58.1% were male and the median (IQR) time from symptom onset to randomisation was 10 (8-12) days. Neutralising antibody titres >1:80 were present in 133 (83.1%) patients at baseline. The proportion of patients with clinical improvement on day 28 was 61.3% in the CP+SOC group and 65.0% in the SOC group (difference -3.7%, 95% CI -18.8-11.3%). The results were similar in the severe and critically ill subgroups. There was no significant difference between CP+SOC and SOC groups in pre-specified secondary outcomes, including 28-day mortality, days alive and free of respiratory support and duration of invasive ventilatory support. Inflammatory and other laboratory marker values on days 3, 7 and 14 were similar between groups. CONCLUSIONS: CP+SOC did not result in a higher proportion of clinical improvement on day 28 in hospitalised patients with COVID-19 compared to SOC alone.


Subject(s)
COVID-19 , Aged , COVID-19/therapy , Humans , Immunization, Passive , Male , Middle Aged , Plasma , SARS-CoV-2 , Treatment Outcome , COVID-19 Serotherapy
10.
Front Med (Lausanne) ; 8: 629112, 2021.
Article in English | MEDLINE | ID: covidwho-1156132

ABSTRACT

Teenagers generally present mild to no symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In the present report, we present the case of a 14-year-old boy with Angelman syndrome (AS) who presented with severe COVID-19 symptoms. He spent 20 days in the ICU with elevated inflammatory biomarkers (C-reactive protein and D-dimer) and increased peaks of neutrophil-to-lymphocyte ratio, which is uncommon for teenagers diagnosed with COVID-19. Although he showed physiological instability, he was able to produce neutralizing antibodies, suggesting a functional immune response. The literature concerning the immune response to infections in patients with AS is still poor, and to our knowledge, this was the first report of a patient with AS diagnosed with COVID-19. As such, the present study may alert other patients with AS or other rare diseases that they lack a competent immune response and could suffer severe consequences of SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL